

Topic 01: Module Introduction

Lecture 01: Module Overview

Dr Kieran Murphy

WE GO ... J

Department of Computing and Mathematics, Waterford Institute of Technology. (Kieran.Murphy@setu.ie)

Spring Semester, 2025

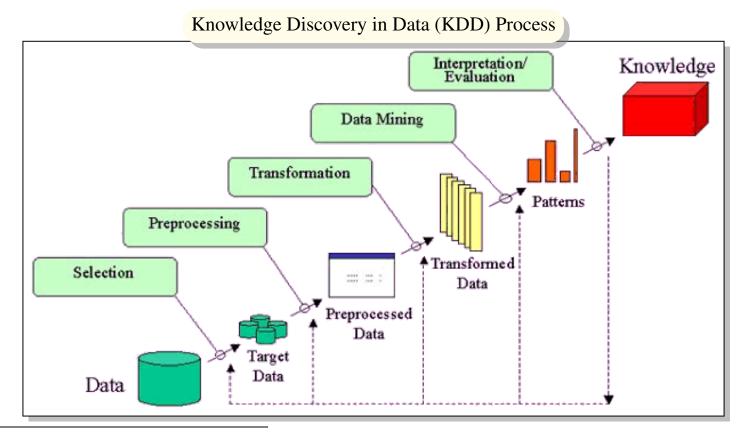
Outline

- Module motivation and aims.
- The three components of a Machine Learning Problem
- Data mining / Machine Learning workflow

What is Data Mining?

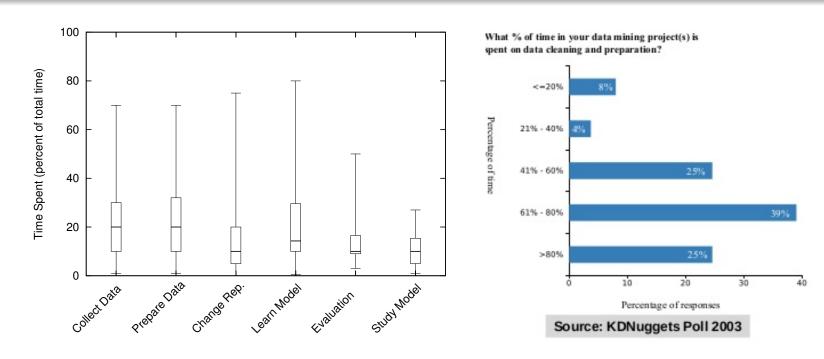
We are drowning in data but starving for knowledge!

Necessity is the mother of invention \Rightarrow Data Mining \approx Automated analysis of massive data sets.


Definition 1 (Data Mining)

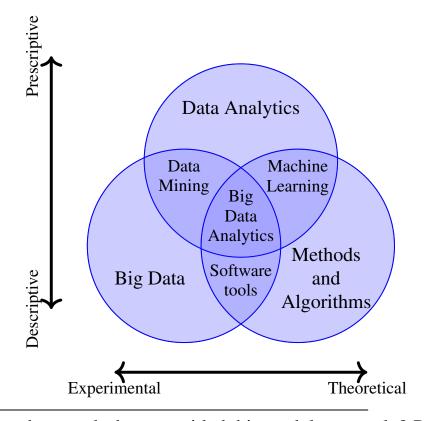
The non-trivial extraction of implicit, previously unknown and potentially useful knowledge from data in large data repositories

```
non trivial — obvious knowledge is not useful (we already know it) implicit — hidden difficult to observe knowledge previous unknown — if known then, why go to this effort? potentially useful — actionable easy to understand
```


Data Mining vs Knowledge Discovery in Data (KDD)

- Data mining and KDD are often used interchangeably.
- Actually data mining is only a part of the KDD process.

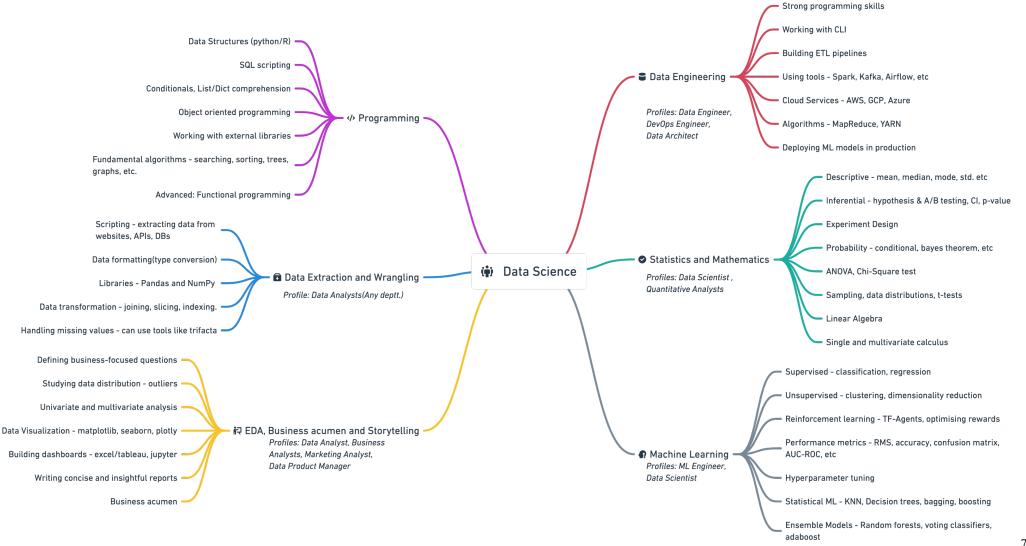
See A Comparative Study of Data Mining Process Models (KDD, CRISP-DM and SEMMA)

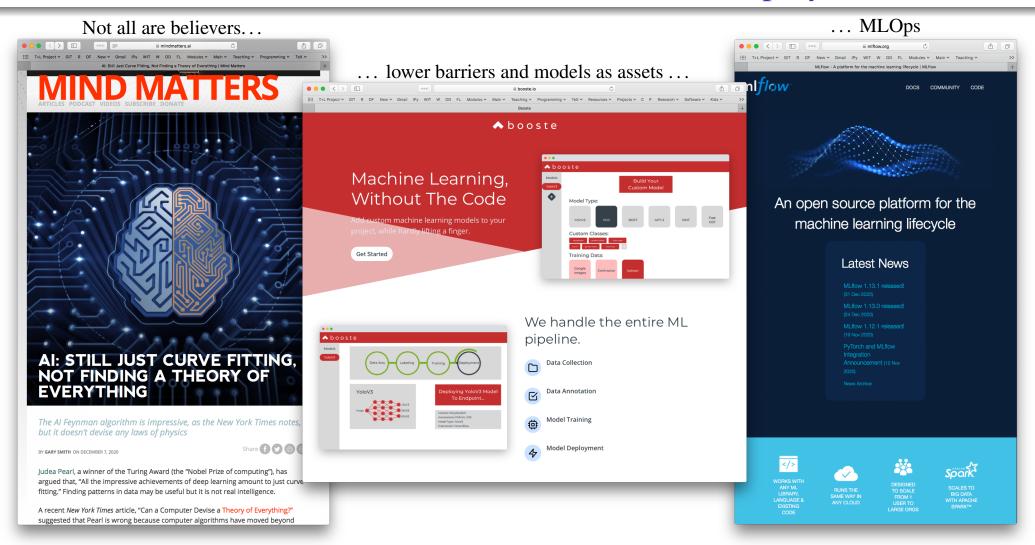

Data Mining (Model Building) is less than half of Data Mining



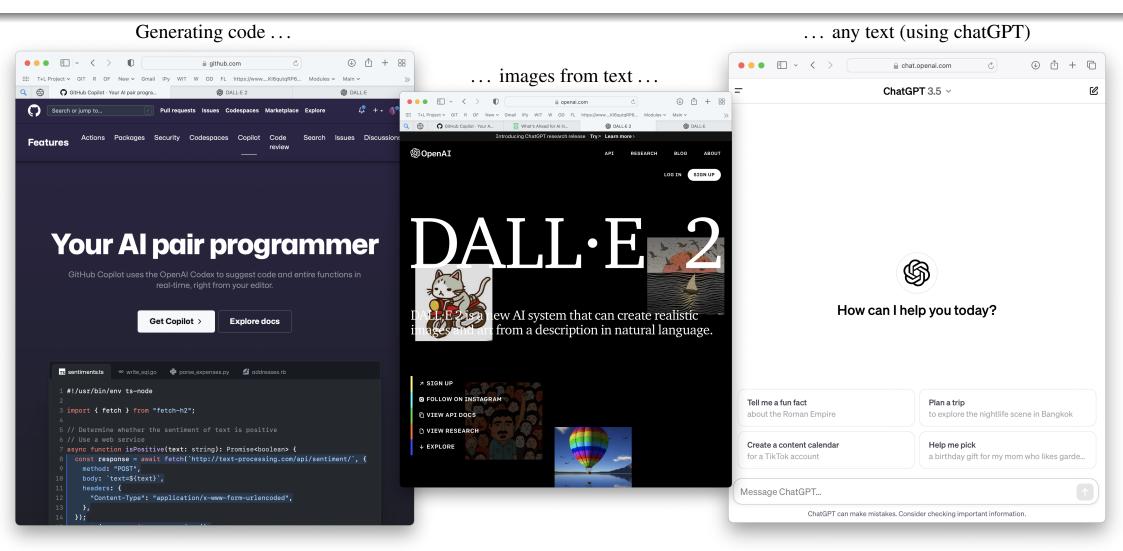
- Boxplots: median is 20% on collecting data, 20% on preparing data, and 10% on changing data representation all before starting on model.
- Bar chart data cleaning and preparation consumes at least 80% of project time for 25% of the participants, and 61% to 80% for another 39%.

Related Disciplines — Data Mining vs Data Analytics vs Data Science[†]


- Data Mining is about finding the patterns in a data set, and using these patterns to make predictions.
- Data Science is a field of study which includes everything from Big Data Analytics, Data Mining, Predictive Modelling, Data Visualisation, Mathematics, and Statistics.



^{*}In other words, have we titled this module correctly? Probably not, and it should be called Data Analytics 2 or Data Science 2


Data Science Mind Map

Data Science in 2021 — ML Models as assets, ML Deployment Services

Data Science in 2022 — Generative AI and LLM

Data Science in 2023 — Generative AI going Mainstream

Multimodel models Text Model

Meta Al

Open sourcing of models

Sharing and reusing of models (Hugging Face)

Specific to each model General model classes Each model specific config inherits **BrandNewBertConfig** all generic attributes and functions PreTrainedConfig from PreTrainedConfig and adds inherit from PreTrainedConfig - is encoder decoder model specific attributes. - vocab size

PreTrainedModel

- output attentions

- from pretrained()

- save pretrained()

- confia

Video

from pretrained() - save pretrained()

PreTrainedConfig.from_pretrained(dir):

File is expected to be found as dir/config.json.

PreTrainedConfig.save_pretrained(dir): Serializes configuration instance as dir/config.json.

Load serialized configuration object from dir (locally or from url).

- init weights()
- generate()

Each model specific PreTrainedModel has access to self.config, inherits all functions from PreTainedModel and

provides a model specific initialization method used by init weights()

BrandNewBertModel inherit from BrandNewBertPretrainedModel

- brand new bert encoder
- forward()

BrandNewBertModel is the "base" model that has torch.nn.Modules, such as brand new bert encoder as attributes and outputs just the encoded hidden

> BrandNewBertModel.forward(): defines the inference function for models. It is called when running model(input_ids). The goal for every new model should be that BrandNewBertModel.forward() is a self-contained function of the model file so that the reader does not have to look into other files to under it

- num hidden layers - num attention heads BrandNewBertConfig is the model specific configuration and contains all parameter that are required to instantiate a BrandNewBertModel, such as num_hidden_layers, etc. Every parameter should have a default value that corresponds to the main model checkpoint to be added

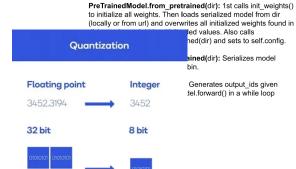
BrandNewBertPreTrainedModel inherit from PreTrainedModel

- base_class_prefix = "brand_new_bert"
- init weights()

Both the "base" model without any head and models with a specific head inherit from a model specific PreTrainedModel

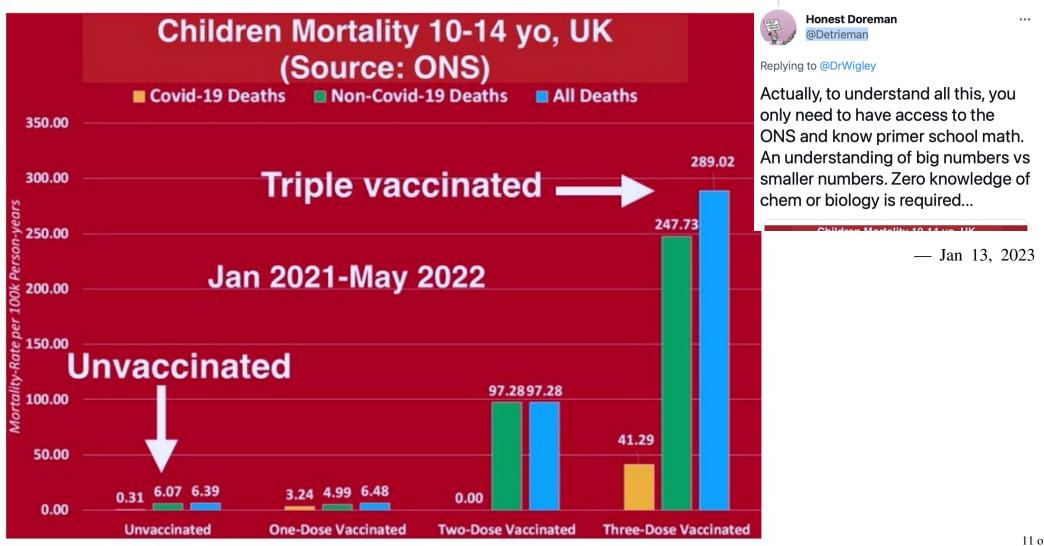
reference

BrandNewBertPreTrainedModel is the model specific PreTrainedModel class. It is important to define the initialization strategy and common class attributes, such as base_class_prefix for all BrandNewBert implementations.

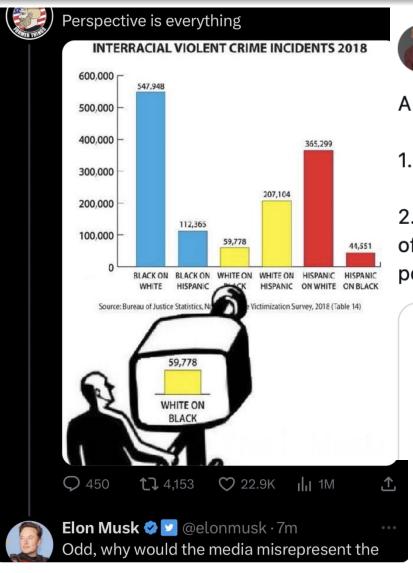

BrandNewBertForMaskedLM

- inherit from BrandNewBertPretrainedModel - brand new bert
- masked Im head

- forward()


BrandNewBertForMaskedLM is a head-specifo model that has BrandNewBertModel and a specific head layer, called masked_Im_head as attributes.

BrandNewBertForMaskedLM.forward(): calls brand new bert.forward() and masked_lm_head.__call__() to generated the head specific outputs, e.g. the logits in this case. The function is usually very short



Lies, Dammed Lies and Statistics

Lies, Dammed Lies and Statistics

Keith Boykin @keithboykin

A factual rebuttal to Elon Musk's crime meme.

- 1. White offenders cause more violent crime than every other group.
- 2. The rates at which white victims experience violent crime from Black offenders is similar to the overall percentage of Black people in the population (14.6%).

🚯 🔥 Kareem Carr | Statistician 🔥 @kareem_carr · May 8, 2023

I know a lot of you wanted a technical breakdown of this meme so here it is!

I don't think you will find this level of detail anywhere else so keep reading if you don't want to miss out.

— May 9, 2023

Hype? Again?

• This article is more than 6 years old

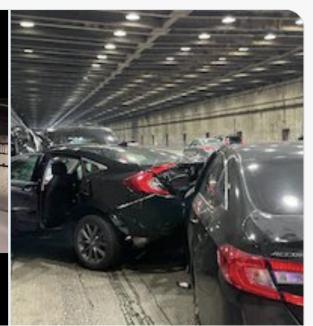
Two years until self-driving cars are on the road - is Elon Musk right?

The Tesla CEO has proclaimed that autono problem' but tech and executives in recen their expectations

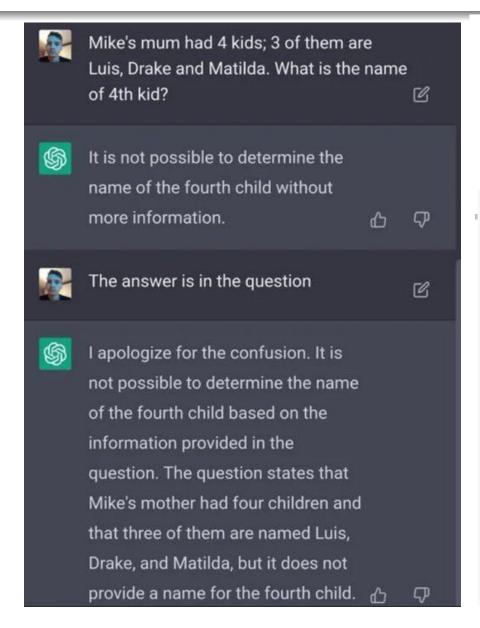
#Tesla in 'self-driving mode' slams on brakes in tunnel for no reason. The car caused an eight-vehicle crash that injured nine people. Just hours before the crash #Musk had triumphantly announced that Tesla's "Full Self-Driving" capability was available in North America.

Pedro Domingos ② @pmddomingos · Jan 15

The less you know about a profession, the sooner you think it'll be replaced by Al.



1 421


2,357

111 301.5K

But chatGPT can do ...

14 of 31

Delivery

>Resources >

- All lecture slides, handouts and datasets: GitHub setu-datamining2.github.io/live
- All activities: quizzes and assignments: Moodle moodle.wit.ie/course/view.php?id=199957

Delivery

- Two 1-hour lectures and one 2-practical session.
 - Lecture sessions can tend to get very non-interactive so to help avoid this please ask questions.
 - Default mode for lectures and practical sessions is on campus.
- Slack
 - Will use this for all last minute posts and individual/group Q+A, particularly for assignments.

Strategy to handle module

- Prepare review material in advance of the sessions, install/download the software/datasets.
- Interact yes, this is rich coming for an introvert mathematician, but we live in strange times.
- Time management give tasks a serious/focused effort, but when stuck ask for help.

Assessment Structure — 100% Continuous Assessment

Covering skills

Data Wrangling + Feature Engineering

(pandas and friends)

(regex)

- NLP, Text processing
- Model building and optimisation

(skilearn, PyTorch, PyTorch Lightning, ...)

Breakdown >

- Metric:
 - 20% Student engagement + 80% Demonstration of skills/understanding
- Activities:
 - Moodle quizzes based on analysing datasets / model building / etc.
 - Data science problems with mixture of Kaggle style grading and traditional grading.

Calandar

- Week 14/15 end of semester individual review interview (similar to S1).
- 5 weeks + reading week + 5 weeks + Easter break (2 weeks) + 2 weeks + 3 weeks for CA

12 teaching weeks

Three Components of a Machine Learning Problem

It is easy to get lost among the multitude of choices one needs to make when given data mining problem. A good decomposition is the following:

Representation	Evaluation	Optimization
Instances	Accuracy/Error rate	Combinatorial optimization
K-nearest neighbor	Precision and recall	Greedy search
Support vector machines	Squared error	Beam search
Hyperplanes	Likelihood	Branch-and-bound
Naive Bayes	Posterior probability	Continuous optimization
Logistic regression	Information gain	Unconstrained
Decision trees	K-L divergence	Gradient descent
Sets of rules	Cost/Utility	Conjugate gradient
Propositional rules	Margin	Quasi-Newton methods
Logic programs		Constrained
Neural networks		Linear programming
Graphical models		Quadratic programming
Bayesian networks		
Conditional random fields		

[†]A Few Useful Things to Know about Machine Learning, Domingos, 2012.

3 Components — Representation

Representation	Evaluation	Optimization
Instances	Accuracy/Error rate	Combinatorial optimization
K-nearest neighbor	Precision and recall	Greedy search
Support vector machines	Squared error	Beam search

Representation refers to formulating the problem as a machine learning problem — typically a classification problem, a regression problem or a clustering problem.

- How do we represent the input?
- What features to use?
- How do we learn additional features?
- With each type of problem, we have multiple subtypes.

 For example which classifier? a decision tree, a neural network, a support vector machine, a hyperplane that separates the two classes etc.

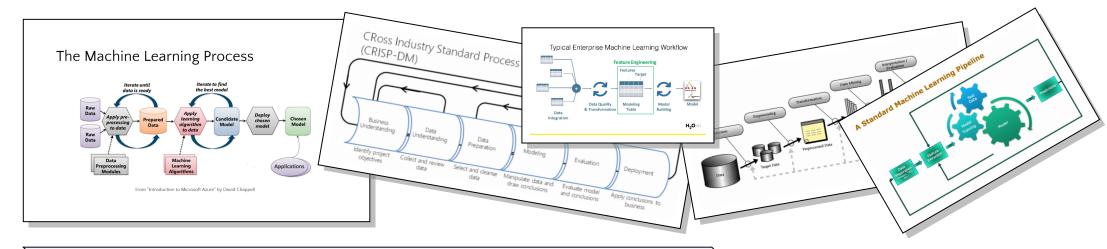
3 Components — Evaluation

Representation	Evaluation	Optimization
Instances	Accuracy/Error rate	Combinatorial optimization
K-nearest neighbor	Precision and recall	Greedy search
Support vector machines	Squared error	Beam search

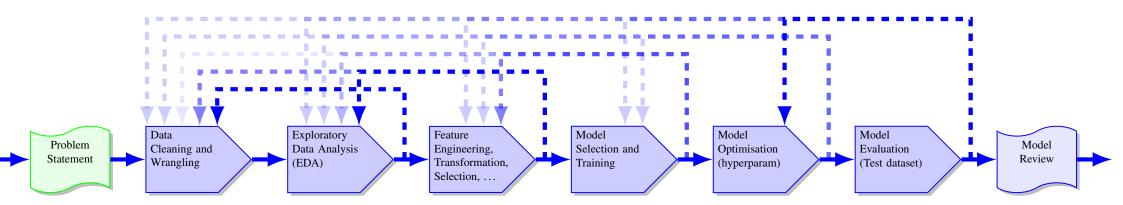
Evaluation refers to an objective function or a scoring function, to distinguish good models from a bad model.

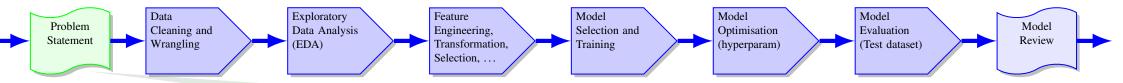
- For a classification problem, we need this function to know if a given classifier is good or bad. A typical function can be based on the number of errors made by the classifier on a test set, using precision and recall.
- For a regression problem, it could be the squared error, or likelihood. Do we include regularisation? etc

3 Components — Optimisation


Representation	Evaluation	Optimization		
Instances	Accuracy/Error rate	Combinatorial optimization		
K-nearest neighbor	Precision and recall	Greedy search		
Support vector machines	Squared error	Beam search		

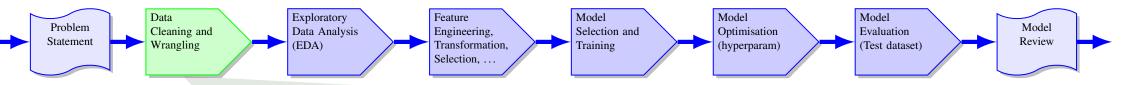
Optimisation is concerned with searching among the models in the language for the highest scoring model.


- How do we search among all the alternatives?
- Can we use some greedy approaches, branch and bound approaches, gradient descent, linear programming or quadratic programming methods.


Data Mining Workflow

There are many, many ...

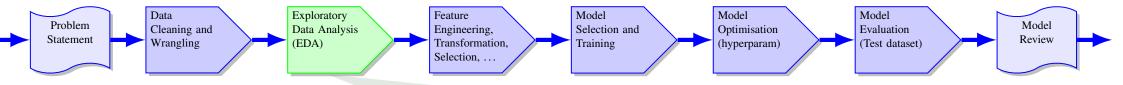
So why not make YADMW (Yet Another Data Mining Workflow)?


What type of problem is it?

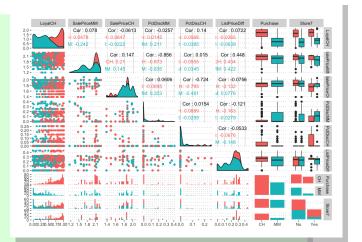
- Exploratory data analysis
 Do we just want to see what the data says?
- Association / Rule findingAre we searching for relations/patterns?
- Hypothesis testing (Statistical)

 Do we have a theory we wish to test?
- Model building

Do we wish to build a representation of some pattern within the data?


- Supervised \leftarrow data spilt into input variables (features) and output variable(s) (target(s))
 - Classification (target is categorical) vs regression (target is continuous)
- Unsupervised \leftarrow no target
 - Clustering grouping similar cases

How to import and prepare data for subsequent analysis/processing?

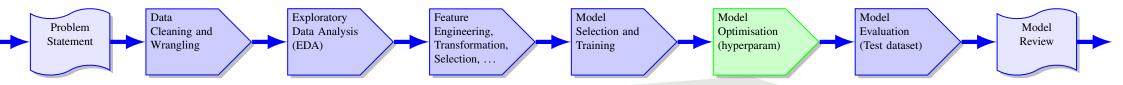

- Multiple file formats
 - Pandas supports a wide collection of file formats but default options often need to be changed to suit data.
 - Main file format (Comma Separated Values (csv)) does not support meta-data, is slow, and results in large files ⇒ use other formats (pickle, feather) to store datasets between steps in the workflow.
- Assumptions made by input parser can be important (i.e., bite you when you least expect)
 - Scientists rename human genes to stop Microsoft Excel from misreading them as dates
 - Pandas vs excel use different heuristics to decide on data type of each variable.
- Sub-tasks
 - Check dimension (number of rows/cases, number of columns/variables).
 - Check data types (categorical, ordinal, or numerical (discrete/continous)) of each variable.
 - Check for missing values, encoding errors, etc.
 - Merge tables, apply filters, and general data wrangling to generate (tabular) dataset suitable for EDA.

Data mining / Machine Learning workflow

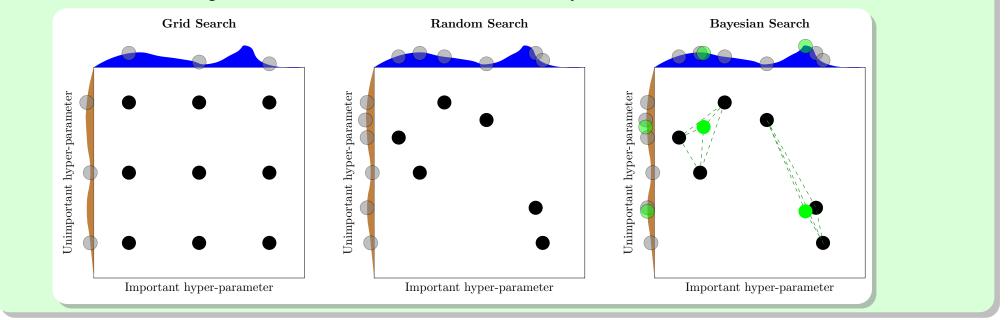
What is the data telling us?

- Univariate descriptive statistics examine each variable
 - What are typical values?
 - What is the variation / spread / range?
 - What does the data look like ... bell curve, bath tub curve, etc. ?
- Bi- / multi- variable descriptive statistics
 - Identifying relationships between variables.
- All descriptive statistics methods summarise data:
 - ✓ A summary is good since it helps to focus on simpler and important aspects.
 - X A summary is bad if it focuses on irrelevant or the wrong aspects.
 - ⇒ Need to use multiple methods, be aware of their strengths/deficiencies.

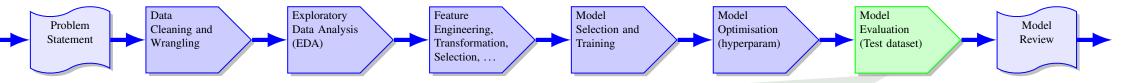
Can we transform, encode/bin, select, ..., the given features to improve model training?


- Better features can mean:
 - Better model performance and reduce training times.
 - Simpler models become applicable think linear/logistic regression.
 - More explainable models the future of machine learning (hopefully).
 - Cheaper and easier models to deploy.
- Feature selection reduces the number of features used in the model:
 - Drop features that have low variability.
 - Drop features that have no relation to target.
 - Drop features that are highly related to other features multicollinearity.
 - Keep features whose addition to model have the largest improvement in model score.
- Feature extraction merges existing features to generate (hopefully) fewer features with essentially all the variation.

Data mining / Machine Learning workflow


Which models are suitable?

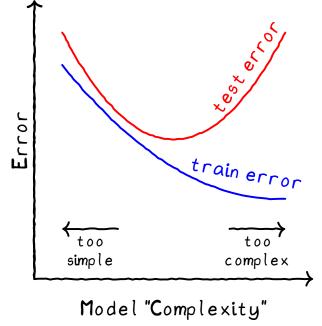
- Models vary greatly in terms of capabilities/deficiencies usually aim to build a short list of candidate models, which are subsequently optimised in the next step.
- Select models based on different algorithms/approaches.
- Select (loss function and) evaluation metric.
 - Loss function is used to train model, evaluation metric is used to evaluate model (post training).
- Relative model performance can help identify issues with data.
 - Outliers can negatively affect linear regression but have smaller impact on decision tree based models.

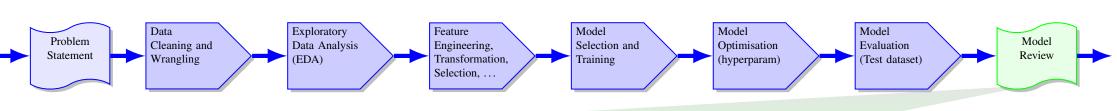


How do we determine optimal values of the hyper-parameters?

- Most models have options which control how a model "learns" from the training data.
- Three search stratagies: Grid search < Random search ≪ Bayesian search

Data mining / Machine Learning workflow

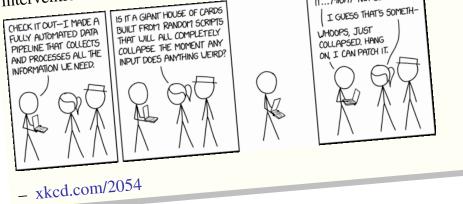

How well does the model generalise (to unseen data)?


• In the machine learning approach (vs statistical approach) we rely on model performance on unseen data to

evaluate models.

• Split data into train/test, only use train dataset for all modelling decisions.

- Data leakage (MachineLearningMastery article), where information outside the train dataset is used in model building.
- Is there evidence for overfitting?
 - Does the model perform much better on training dataset than on the test dataset?
- Multiple techniques to address overfitting:
 - Regularisation (linear / logistic regression).
 - Trimming (decision trees).
 - Dropout (neural networks), Batch normalisation (CNN).



How well have we addressed the problem statement?

- A what level of accuracy (or other metrics) does a model become useful?
 - This is a business, medical, ... decision
 - The larger the relative payoff the weaker the model can be and still be useful.
- OK, finally ready to implement/deploy model ...
 - Separate skillset / concerns
 - MLOps = ML + DevOps
 - Monitoring of model drift needed.
- towards data science What is MLOps Everything You Must Know to Get Started

Q: Why don't we automate all of this shtuff?

Tools are getting better and easier to use, but need intervention/direction (data can be weird in weird ways)

